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A classical Fermi accelerator model (FAM) is known to show chaotic behavior. 
The FAM is defined by a free particle bouncing elastically from two rigid walls, 
one fixed and the other oscillating periodically in time. The central aim of this 
paper is to connect the quantum and the classical solutions to the FAM in the 
semiclassical limit. This goal is accomplished using a finite inverted parametric 
oscillator (FIPO), confined to a box withfixed walls, as an alternative represen- 
tation of the FAM. In the FIPO representation, an explicit correspondence 
between classical and quantum limits is accomplished using a Husimi represen- 
tation of the quasienergy eigenfunctions. 
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1. I N T R O D U C T I O N  

An important question of contemporary interest is to find out the quantum 
manifestations of classical chaos (QMCC). A significant amount of work 
has been directed at finding answers to this question and a general 
framework is emerging where aspects of the QMCC are becoming estab- 
lished. Analyses of the statistical properties of the energy level separations 
of time-independent Hamiltonians have led to explicit differences between 
those with an integrable and those with a nonintegrable classical counter- 
part (e.g., ref. 1). The framework in which these classifications have been 
made is provided by the phenomenological Gaussian ensembles of random 
matrix theory (RMT), introduced by Wigner and Dyson to account for the 
physics of complex nuclei ~2) (See ref. 3 for a recent review). When the 
Hamiltonians are time-periodic, the quasienergy spectra have been found 
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to follow the circular ensembles of RMT. (4'5) In many of these studies, 
though not all, (6'7) a direct and explicit connection between the classical 
and quantum solutions has not been provided. It is, however, quite impor- 
tant to be able to "see" how the quantum solutions merge to the classical 
ones in the semiclassical limit. 

It has become the norm in the field of QMCC to study specific quan- 
tum mechanical models known to be chaotic in the classical limit. One 
such model is the Fermi accelerator model (FAM), which has been exten- 
sively studied classically (8) and to some extent quantum mechanically. (4'9) 
This model was introduced by Fermi to explain the origin of the high- 
energy cosmic rays bombarding the earth. (1~ The FAM was one of the first 
models to study chaotic behavior in a classical two-degrees-of-freedom 
system. The quantum study of the model has revealed novel features of the 
fluctuations in the quasienergy spectrum. The nearest neighbor quasienergy 
statistics interpolate between Poisson and Wigner-type distributions as h 
goes from large to small. (4'9) A direct connection between the classical and 
quantum solutions, although it was attempted in ref. 9, has not been 
presented. Achieving this connection is the central point of this paper. One 
of the main problems in connecting the quantum with the classical problem 
in phase space is to have an appropriate representation of both treatments 
in terms of bona fide canonically conjugate variables. We are able to carry 
out this connection by using an alternative representation of the FAM in 
terms of a finite inverted parametric oscillator model (FIPO). In the FIPO 
representation we are then able to connect the classical and the quantum 
solutions. We present several examples of specific classical periodic orbits 
with their quantum counterparts. 

This paper is organized as follows: first we present the transformation 
maps of the FAM to the FIPO both in the classical and quantum cases. 
We consider the specific wall oscillation rule used in refs. 4 and 9 to obtain 
explicit solutions to the FAM problem. For this oscillation law an almost 
complete quantfim mechanical integration of the FAM is possible. In 
the FIPO representation one gets a model with two f-kicked inverted 
oscillators. A direct comparison between the classical and quantum 
approaches can then be carried out, for it is found that the kicks occur at 
integer or half-integer periods of the oscillating wall. By contrast, in the 
classical study of the FAM the maps obtained relate particle collisions 
with the moving wall that do not necessarily occur at the period of the 
oscillating wall. This is an important difference, since the quantum analysis 
is done using the quantum Floquet operator, which is defined at the wall 
period. In Section 3 we present an analytic analysis of a set of particular 
periodic orbits in the classical limit. The quantum problem is formulated in 
Section 4, and in Section 5 the bulk of our numerical solutions is presented. 
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It is in Section 5 where we make the connection between the selected set of 
classical orbits and quantum quasienergy eigenfunctions, including scarred 
periodic orbits. We conclude in Section 6 with a brief recap of the main 
results of the paper and a discussion of some open problems left for the 
future. 

2. C A N O N I C A L  T R A N S F O R M A T I O N  

The Fermi accelerator model (FAM) is defined by the Hamiltonian 

HFA M = ~ m 0 ~< y(z) ~< loS(z) (1) 

with lo the minimum box size and S(z) a periodic function of time r, i.e., 
S(z + %)= S(z). Previously, the study of the model in the classical limit 
used as dynamical variables the normalized velocity of the particle vn and 
the position of the wall before the nth collision ~n. The resulting two- 
dimensional area-preserving map, (vn +1, ~n + 1)= T(vn, ~)n), for specific S(z) 
laws, was then studied using standard dynamical system theoryJ 8J Periodic 
and chaotic solutions were found whenever S(r) is such that the moving 
wall does not move with constant velocity, since otherwise the solutions are 
nonchaotic. The problem of connecting these classical solutions to their 
quantum counterparts is that the particle can have many collisions with 
the moving wall before it hits the fixed wall again. By contrast, in the 
quantum problem, as will be discussed later, the solutions are obtained by 
calculating the time evolution operator at a period of the oscillating wall. 
One could try and solve the equation of motion resulting from Eq. (1) for 
y(z) at a period. Instead, we choose to change the representation of the 
problem to one where we can achieve the goal of expressing the classical 
solutions at a period with classical and quantum maps that are clearly con- 
nected to each other. 

The transformation is carried out by using the well-known Liouville 
transformation (11) 

t = S2(z,) 

Y (2) 
X ~ -  

s(z) 

This is a nonlinear transformation in time and a rescale transformation in 
space. Substituting this transformation in Eq. (1), after using the chain rule, 
we get the finite parametric oscillator equation of motion 

d 2 
dt~X(t)+co2(t)x(t)=O; O<~x(t)<~lo (3) 
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with angular frequency 

) -d-t J (4) 

To avoid confusion, we are calling S(t) = S(t(z)) = O(t) hereafter. Note that 
co2(t + To)--co2(t), where To is defined by 

~  
To = S2(z ) 

As will be seen later, for the specific form of S(r) in which we are 
interested, one gets a finite inverted parametric oscillator (FIPO),  and for 
this reson we will refer to this representation as the F I P O  model. 

By carrying out this transformation, the time-dependent boundary 
condition present in the FAM has been replaced by a fixed wall boundary 
condition problem. Of  course, since the FAM is not integrable, the F I P O  
is also not integrable. In fact, we can see that if the F I P O  were defined 
in an infinite box, one could use standard classical Floquet theory to 
perturbatively obtain its solutions. Nevertheless, as we shall see later, it is 
in the F I P O  representation that we are able to connect its classical to its 
quantum solutions. 

The Hamiltonian defining the F I P O  is given by 

p2 1 2 2 
Hvieo=2---~+~mco (t) x ;  O<~x(t)<~l o (5) 

with momentum p = m2. Note that in this representation p and x are bona 
fide canonically conjugate variables and thus we can use standard canoni- 
cal quantization rules to write down the quantum F I P O  Schr6dinger 
equation problem as 

c~ h 2 c~ 2 1 2 
ih~tg'(x,t)= 2m&2g'(x,t)+~mo (t) xag'(x,t) 

g~(x = 0, t) = ~ ( x  = l o, t) = 0 (6) 

f~~ [ ~(x,  t)12 dx = 1 

To check that everything works out as it should, we go now from the 
quantum F I P O  to the quantum FAM. In so doing we use the unitary 
transformation that preserves the wave function normalization condition, 

~(y, ~) [O(t)] 1/21 exp ( i  m dO(t) t d - - X  2 }P(x, t) (7) 
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With this unitary transformation for the wave function, together with the 
inverse transformation of (2), and using again the chain rule, 

~ 0  r = 2( t ' )  d t '  

y = O(t) x 

(8) 

we arrive at the Schr6dinger equation for ~(y, r), together with its 
boundary and normalization conditions, 

h2 0 2 
ih q~(y, r) = 2m ~?y2 q~(Y, r) 

~ ( y  = O, ~) = q ) ( y  = l o S ( r ) ,  r)  = o (9) 

fl S(-+) l~(.y, r)[ 2 dy  = I 

This equation is defined in the frame of reference of the original time ~ and 
coordinate y.(4) These are the equations that define the quantum mechani- 
cal FAM. 

It is clear that the frequency law c02(t) given in Eq. (4) is the same in 
both the classical and quantum mechanical representations. This is a 
special case, though, since in the quantum mechanical study of the FIPO 
the path integral representation of its Green function involves an action 
that consists of only linear and quadratic terms. This is one of the few cases 
where the Green function can be expressed exactly in term of its classical 
action. (a2) Note that the fixed wall boundary conditions presented here 
merely modify the calculation of the Green function to include a summa- 
tion of an infinite number of images. 

The Liouville transformation mentioned above has been used 
extensively. (13-16) In the quantum case and applied to a FAM the second 
transformations (7) and (8) were used recently by Seba (17) for the specific 
case of the periodic c02(t) having at least five continuous derivatives, which 
unfortunately is not the case of interest here. In order to have chaotic solu- 
tions, the ~02(t) of interest in this paper has discontinuities already in its 
first derivative. 

As mentioned above, both the classical and quantum mechanically 
transformed FIPO are no easier to solve than the original FAM. The 
important advantage of the FIPO is that it will allow us to make explicit 
connections between the classical and quantum problems in the semi- 
classical limit. To accomplish this task, however, we need to choose the 
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function S(z) appropriately. It was found that in the quantum study of the 
FAM the problem can be solved to a significant extent by choosing (a) 

mod[z, To )1/2 S('c)= 1 +2090 "Co]-~- (lo) 

(note that o) o is the parameter 3 in ref. 4), shown in Fig. 1. The function 
S(r) is a periodic function of ~ with period t0, and the overall displacement 
of the wall is A = [1 + COoro) 1/2- 1] 10. Using Eqs. (2) and (4), the angular 
frequency of the corresponding FIPO is 

n ~  - - o o  

with To=ln(1 +COoTo)/e)0. It is seen in Eq. ( t l )  that co2(t) consists of a 
constant inverted harmonic oscillator part and two sets of periodic Dirac-6 
functions, one at integer, and the other at half-integer periods. 

In the remaining parts of this paper we shall discuss our results for the 
classical and quantum mechanical studies of the FIPO with the angular 
frequency given by Eq. (11). 

Fig. 1. 

s(,) 

. . . .  I . . . .  I . . . .  I . . . .  

0 0 . 5  1 1 . 5  2 

T / T  0 

Time dependence of the wall oscillation given by Eq. (10). Here mo = 1. 
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3. CLASSICAL STUDY 

For the specific form of ~o2(t) given in Eq. (11), the Hamiltonian given 
in Eq. (5) reads 

H = ~  1 2 2 -- ~ COoX + 2(2)0 x2 

0~<x~<l (12) 

Here we set m = 1, and lengths and times are normalized by l 0 and To, 
respectively. In these units the only free parameter in the problem is ~Oo, 
which is related to the wall oscillation amplitude of the FAM. This 
Hamiltonian describes the motion of a particle in the presence of an 
inverted harmonic oscillator potential and 3-kicked every half period. The 
kicks have opposite signs every half period. 

When the particle does not hit the walls nor the ~-potentials, the 
solutions to the corresponding equations of motion can be written in the 
matrix form 

( x ( t ) ) = ( c o s h ( c o o t ' )  (1 /O)o)s inh(o2ot ' )~ (X( lo ) )  

p ( t ) ]  \~Oo sinh(coot') cosh(co0t') J k p ( t o ) J  

( x ( t ~  (13) 
= M o ( t  - to) \ p ( t o )  j 

with t ' =  t - t  0. The time interval from to to t is between full and half 
periods, so that the restriction t' < 1/2 applies. The motion of the particle 
during this time interval is described by the Hamiltonian H o =  
p 2 / 2 -  co2x2/2, with the conserved energy E =  Ho. From the set of coupled 
equations given in (13) one obtains the condition 

x ( t )  p( to)  - X(to) p ( t )  = 2 E sinh(co0 t' ) (14) 
~o o 

for E not equal to zero. For E = 0, p(to)  = +_O~oX(to), so that Eq. (13) yields 

x ( t )  = X(to) e +_ ~o,' (15) 

The two equations (14) and (15) will be used later to do the analytical 
calculations of periodic orbits in phase space. 

The collisions of the particle with the walls reverse its momentum 
direction at the time of collision. The effect of the collisions with the walls 
is given by the equation 

p ( t  + = -- l J \ p ( t .  = mwan( t* )  \ p ( l ;  )] 
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where t ,  is the time at which the particle hits a wall. We follow the usual 
convention of plus sign right after and minus sign right before a collision. 

The particle is kicked by the Dirac-6 potential every full and half 
period. Integrating Hamilton's equations of motion for an infinitesimally 
small time interval before and after the full and the half periods, one gets 
the equations that describe how the particle gets kicked, 

( x(t +)) = ( 1 
p(t+)J -2co 0 

, 

p(t+ )J +2(-Oo 

oh(x(, (!Vx(, 

o (x(t- (x(t-)) (17) 

with the first equation at half and the second at full period. The particle 
would be trapped in the box with a time-independent inverted harmonic 
oscillator potential if it were not for the kicks described by these two equa- 
tions. Without the kicks the solutions to the equations of motion would be 
regular and thus integrable. In the special case when x(t +) =x(t )=0 ,  
one obtains from Eq. (17)p( t+)=-p( t - ) .  This means that the kicks are 
irrelevant at x = 0. 

One can now construct a map in phase space with Eqs. (13), (16), and 
(17). The points obtained by the iteration of this map describe a trajectory 
in phase space of an initial point according to the equations of motion. 
Iterating this map for a given initial point in phase space gives the 
positions of the particle in phase space at an integral number of periods. 
This map can be formally written as 

M(1 + 0+)  = Mkick(1). Mr(1 - 1+ +-- ~---~ ) -Mkick(1 ) .Mf(1 -  *--0 + ) (18) 

This map consists of four parts, l he term Mf(�89 +--0 +) propagates the 
particle freely for the first half period, while Mkick(1) indicates the kicks of 
the particle at a half period. After that time the M r ( l - ~  �89 propagates 
freely the particle for the second half period, whereas Mkick(1 ) indicates the 
kicking of the particle again at an integer period. By propagating freely we 
mean that the particle experiences only the time-independent inverted 
harmonic oscillator potential confined between the two walls. 

It is important to note that both Mr( �89 ~ 0  +) and Mf(1 ~�89 in 
Eq. (18) can be formed by a product of many of the Mo and Mwan matrices 
defined in (13) and (16). Furthermore, a series of t, 's may have to be deter- 
mined corresponding to the particle's oscillating back and forth between 
the two walls. For example, if the energy Eo is such that the time for the 
particle to freely complete a cycle between the two walls is much smaller 
than 1/2, it will then hit the walls many times before it is h-kicked. The 
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opposite limit is when the round-trip period is much larger than 1/2 and 
the particle gets kicked many times before it hits the walls. Generally 
speaking the map M(1 + ~  0 +) can be very complicated and a change 
in initial condition may result in a significant increase or decrease in the 
number of matrix multiplications involved. 

There are a few cases that can be studied analytically and we shall 
consider them next. One simple case is when the energy of the particle is 
so small that during one period of time the particle does not hit either wall. 
In this case there is no effect due to the walls and the map M(1 + ~-0+)  
can be calculated by evaluating the product Mkick(1)'Mo(1/2)" 
Mkick(1/2 ) 'Mo(1/2 ). Using Eqs. (13) and (17), we get 

( e ~0 (1/(Do)(e -~~176 1)) (19) 
M( I+  ~ 0 + ) = \ ( D o ( 1 - e  -~~176 2 - e  ~0 

The degenerate eigenvalue of this map is 1, and its eigenvector is 
(Xo, O)oXo). Starting from these points as initial conditions, the map (19) 
will bring them back to their initial phase space positions after one period. 
These points are then fixed points phase space, i.e., periodic orbits of 
period - 1 .  Note the energy of these orbits is zero. From Eq. (15) one can 
see that points with x0>exp( - (D0/2)  are exceptions to this rule. In the 
present case the momentum p0=(D0Xo is taken as positive. Then if 
X(to)>exp(-(Do/2), after the first half period of free propagation we 
will have x(t)> 1. This means that the particle has hit the wall at x = 1, 
thus invalidating the assumption leading to Eq.(19). For  (Do=l,  
x=exp(-~Oo/2)=0.606530660.  This point is shown in Fig. 2 as N. This 
endpoint is the end of a line of fixed points. Because the equations of 
motion are linear in this example, the tangent map, or monodromy matrix, 
is just M(1 + ~ 0 + ) .  These fixed points are of parabolic type since 
T r M ( 1  + , - - 0 + ) = 2 .  

Another simple example is when the particle starts at Xo = 0 moving 
toward the wall at x = 1 with an appropriate positive momentum Po, so 
that it bounces between the two walls several times and, at axactly half a 
period, the particle comes back to its initial position at x = 0. This case is 
shown in Fig. 3. Because x = 0, the particle does not feel the 6-kicks, and 
the motion is periodic. Note that the particle has to travel from x = 0 to 
x = l  in a time t = l / 4 n ,  with n = l ,  2 ..... The cases n = l  and n = 2  are 
shown in Fig. 3. To calculate the corresponding initial momenta Po, we use 
Eq. (14) with X(to)= O, x(t)= 1, p(to)= Po, t '= 1/4n, and E =  p2/2, getting 

(D o 

Po = sinh((Do/4n)' n = 1, 2 .... (20) 

822/68/1-2-11 
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X 

Fig. 2. Classical stroboscopic phase space plot for 090= 1. The chaotic background is 
obtained from a single initial condition. On the empty islands there are KAM curves around 
the elliptic periodic orbits. The straight line, starting at (0, 0) and ending at N, denotes 
parabolic fixed points. A hyperbolic period-7 periodic orbit embedded in the chaotic 
background is marked by crosses at the intercept of the stable and unstable manifolds. The 
remaining points indicated by letters are explained in the text. 

For  co o = 1, and n = 1, P0 = 3.958635163. This point  is shown in Fig. 2 and 
is denoted as M. Since the m o n o d r o m y  matr ix  in the present  case is ha rd  
to obta in  analytically, we studied the p rob lem numerical ly for coo = 1. We 
find K A M  curves a round  these periodic orbits, which leads us to conclude 
that,  for coo = 1, this is a family of elliptic periodic orbits. 

We proceed to calculate a nontr ivial  period-2 orbit,  shown in Fig. 4. 
Suppose  tha t  the particle starts f rom the initial posi t ion Xo and m o m e n t u m  
Po ( > 0 )  (denoted as point  a in Fig. 4), with energy Eo=(p~-co~x~)/2. 
The values of  (Xo, Po) are such that,  in the first half  per iod of free p ropaga -  
tion, the particle bounces  off the wall at x = 1 (denoted as point  b in 
Fig. 4), reverses direction, and hits the wall at x = 0 exactly at half  a per iod 
(shown as point  c in Fig. 4). At x = 0 the kick is absent.  In the second half 
per iod of free propaga t ion ,  the particle bounces  off the wall at x = 1 and 
comes back  to x = x0 with negative m o m e n t u m  p = -Po -  This second half  
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E 

n = 2  

, J 

n ~ l  

Fig. 3. A family of periodic orbits shown schematically in energy-position space. Arrows 
refer to the directions of momentum. See text for more explanation of this figure. 

period of free propagation is simply the time-reverseo motion of the first 
half period of free propagation. The kick at full period leaves the particle 
with a smaller negative momentum equal to - p o + 2 m o x o ,  and thus a 
lower energy E = [ ( - P o  + 2cooxo) 2 -  to~x~]/2 (shown as point d in Fig. 4). 
The third half period of free propagation results in the particle hitting the 
wall at x = 0 (denoted as point e in Fig. 4). The fourth half period of free 
propagation brings the particle back to x = xo with a positive momentum 
p=po-2OoXo. This is just the time-reversed motion of the third half 
period of free propagation. Finally, the last kick sends the particle back to 
its initial position and momentum (Xo, Po), and thus completes its full 
periodic motion. We now derive the constraint equations for the initial 
conditions (Xo, Po) so as to generate this type of period-2 orbit. The time 
needed to travel from one wall to the other is t ' =  sinh-~[Ogo/(2Eo)l/z]/~Oo, 
for a particle with energy E o. This result is obtained from Eq. (14) by 
setting x(to)=0, p(x0 )=  (2E0) 1/2, and x(t)= 1. To hit the wall at x =  1, 
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tg 
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b 

Fig. 4. Nontrivial period-2 orbit shown schematically in energy-position space as in Fig. 3. 
See text for the definition of points a, b, c, d, e. 

the time needed by the particle to follow the periodic motion described 
above will be 1/2-sinh-l[OJo/(2Eo)l/2]/O~o] (from point a to point b in 
Fig. 4). The momentum at x =  1 is (2E0+co2) 1/2 from conservation of 
energy. Substituting these values into Eq. (14), one gets 

In the third half period of free propagation, in order to have the particle 
go from point d to point e in Fig. 4, x 0 must be given by 

xo = sinh (22) 
(.o o 

This result is derived from Eq.(14) after setting X(to)=Xo, X(t)=O, 
p(t) = (2E) m, and t ' =  1/2 with E o and E as defined before. This set of 
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coupled equations (21) and (22) might not yield physical solutions (i.e., 
with 0 ~< x o ~< 1) for general values of e) o. There is a physical solution with 
xo = 0.649092519, and P0 = 2.702791010, for co o = 1, though. This is point a 
in Fig. 4. The position and momentum at full period are Xo and 
-Po  + 2~OoXo, with the value of the latter being equal to -1.404605972. 
This is point d in Fig. 4. Points a and d are shown in Fig. 2 as O I and 02, 
respectively. Note that these two points are symmetric with respect to the 
line of fixed points terminating at the endpoint N in Fig. 2. We shall come 
back to this point in Section 5. We find, again numerically, that these 
points also represent elliptic periodic orbits. Equations (21) and (22) can 
be generalized to describe a family of periodic orbits, at exactly half period, 
where the particle bounces back and forth several times before it hits the 
wall at points c and e in Fig. 4. Taking this into consideration, Eqs. (21) 
and (22) are generalized to 

coo po-Xo(2Eo+c~176 o 
(23) 

with m, n = 0, 1, 2,..., and the only physical solutions are those for which 
0~<Xo~< 1. 

The calculations of these period-2 orbits and their generalizations are 
just examples of how one can study a class of periodic orbits analytically. 
For arbitrary periodic orbits, this procedure may involve a larger set of 
coupled nonlinear equations than those in Eqs. (21) and (22) or (23). In 
principle, however, most periodic orbits could be calculated this way. In 
practice this is not possible except in simple cases like the ones discussed 
above. We note that this type of analytic analysis is useful in checking the 
results obtained numerically. For example, we checked the numerical algo- 
rithm used in obtaining the results discussed in Section 5 against these 
analytical calculations. We found that our numerical calculations matched 
the analytical results discussed above up to eight significant digits, which 
is sufficient for our purposes in this paper. 

4. Q U A N T U M  STUDY 

The spectrum of the Hamiltonian operator plays the central role in 
studies of time-independent problems. Similarly, when the Hamiltonian is 
periodic in time, the central issue is calculating the spectral properties of 
the one-period Floquet operator. The Floquet operator is the quantum 
counterpart of the classical one-period map given in Eq. (18). One can 
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simply carry out the canonical quantization of Eq. (12) as usual, and the 
quantum version of Eq. (18) gives the Floquet operator 

U(1 §  i 22 -exp - i ~ -  

. e x p ( - i - ~ 2 2 ) . e x p ( - i - ~ h  ) (24) 

with/4o =/~2/2 - co g 22/2, and 0 ~< x ~< 1. The Floquet operator U( 1 + *- 0 + ) 
contains four parts as in the classical map of Eq. (18), i.e., two half-period 
free propagation and two Dirac-6 kicks, one at half and the other at full 
period. In the classical case, in order to take care of the boundary condi- 
tions at x = 0 and x = 1, the matrix for free propagation Mr, may contain 
a product of many M o and Mwan matrices. In contrast, in the quantum 
operator case the free propagation at half period entails just one matrix, 
exp(-iI2io/2h). This is characteristic of a quantum problem where the 
particle, although free, still "feels" the boundary conditions at all times. 
When the particle propagates freely, the basis spanning the Hilbert space 
is formed by the eigenfunctions of the inverted harmonic oscillator confined 
to a box. In this limit the Schr6dinger equation for /~o, in dimensionless 
units, reads 

dz 2 ~ ( z ) +  - a  ~(z) - -0  (25) 

where z = x(2coo/h) 1/2, a = -E/hco o, and E is the eigenenergy of / lo .  This is 
Weber's equation with 7t(z) the parabolic cylinder functions. (18) The 
eigenenergies and eigenfunctions are obtained by imposing the boundary 
conditions 

~,,(z : O) = ~'a(z -- (2coo~h) ~/2) = 0 (26) 

Note that the ith eigenfunction ~t'~(x) depends only on the parameter 
Coo~h, and the corresponding eigenenergy E i=  -hcooai(coo/h) depends on 
both hcoo and coo/h. Notice that the second boundary condition in Eq. (26) 
is such that in the large-h limit the box can be well approximated by a fiat 
box with standard sinusoidal solutions, while in the small-h regime, of 
interest here, the inverted oscillator potential becomes dominant, mostly 
close to z = (2coo~h) 1/2. 

The explicit calculations of the parabolic cylinder functions ~a,(x) in 
the semiclassical regime cannot be done efficiently using their standard 
power series expansions in z. Instead, we find it convenient to diagonalize 
/lo on the complete set of the Fourier sinusoidal basis. One then expands 
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~,,(x) in the sine basis. The number of terms needed in the expansion to 
get a good approximation to ~u,,(x) is a function of h. The smaller the h, 
the larger the number of terms needed in the expansion. 

The solution to the time-dependent problem is obtained from solving 
the eigenvalue equation for the Floquet operator 

0 10) =ei~ 10) (27) 

where [~) is the quasienergy eigenstate, and ~o its quasienergy eigen- 
value. (19) To obtain the spectral properties of the Floquet operator, we 
diagonalized U using as a basis the parabolic cylinder functions gto,(x) 
obtained from the diagonalization of Ho. 

To compare the quantum map results to the classical ones, we need 
to have a phase-space representation of the quasienergy eigenfunctions. 
A convenient way to do this is to use the Husimi representation of the 
quasienergy eigenfunctions with the minimum-uncertainty Gaussian wave 
packet 

(xlct(xo, Po))=~-~) exPL- ~-~(X-Xo)2+t-~x-  (28) 

centered at (Xo, Po) in phase space. Here the root mean square deviations 
3x= (h/2a) 1/2 and Ap= (ha~2) ~/2 are such that AxAp=h/2, with a the 
squeezing parameter used when adjusting Ax and Ap to make comparisons 
to classical phase-space plots. The Husimi distribution of a quasienergy 
eigenfunction 1~) is given by the absolute value square of the inner 
product of the minimum-uncertainty Gaussian wave packet with 1~),(6) 
i.e., 

1 d x  2 
~(x~176176176 fo (tP[x)(xla(x~176 (29) 

The Husimi distribution function Zq, is obtained by scanning the values of 
(Xo, Po) through a region of interest in phase space. The resulting distribu- 
tion is then used to compare to the stroboscopic trajectories in phase space 
obtained from the classical analysis. 

As mentioned in Section 3, the only free parameter in the classical 
analysis is co o. In contrast, the quantum Floquet operator (24) depends on 
h and coo explicitly as COo/h and I2Io/h. Since the basis functions g-'~, depend 
on COo/h only, and the eigenenergies Ei=-hcooai(coo/h), the Floquet 
operator (24) depends on the parameters h and coo only through c%/h and 
COo. This parameter dependence gives a crucial difference between the 
Fermi and FIPO representations. In the Fermi case the Floquet operator 
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depends only o n  CO0/h. (4'9) This makes the connection to the classical limit 
difficult. (9) The reason for this difference in the parameter dependences is 
because the time-dependent transformation given in Eq. (7) changes the 
dynamics in an essential way. This transformation is analogous to changing 
from a fixed to a rotating frame in the problem of a charge in a constant 
magnetic field. 

5. N U M E R I C A L  RESULTS 

To discuss our classical and quantum results, we start by identifying 
the special symmetry that was briefly mentioned after Eq. (22). The classi- 
cal dynamics described by Eq. (12) consists of free-particle propagation 
between &kicks or collisions with the walls. The &kick potentials act every 
half period and are of opposite signs. At kick time, say at t = 0, the 
continuity conditions yield x(0 +) = x (0 - )  and p(0 + ) = p(0 ) + 2cooX(0). 
If we define x(t=O+)=xoand p(t=O+)=po, then at time t = 0  the 
particle, although located at the same point in space, had momentum 
-p(t = 0 - ) =  2cooXo- P0. Since the Hamiltonian given in Eq. (12) is even 
in time, propagating the point (Xo, P0) into the future would be the same 
as propagating it from the past to the point (Xo, 2cooX0-Po). Because t 
and - t  should lead to the same answer, we should have a symmetry about 
the line p = COoX. This symmetry line coincides with the line of parabolic 
fixed points shown in Fig. 2 and extends to x = 1. This symmetry line is 
preserved in the quantum problem. It is shown in the quantum phase-space 
examples of Husimi plots in Figs. 5-8. 

The numerical calculations were done for the most with the parameter 
COo= 1. In this case the two potential terms in the Hamiltonian (12) are 
comparable in magnitude. We also did calculations for values of 
COo=1.2,0.8, and 0.5, and both classical and quantum results are 
qualitatively the same as those obtained from the calculations with COo = 1. 

In the classical analysis we used the map (18) to produce the 
stroboscopic phase space plots shown in Fig. 2. First we calculated 40,000 
iterations from a single initial condition, say x = 0.2, p = -2.0. This initial 
condition leads to a chaotic trajectory shown as a background in Fig. 2 
and plotted in the range p s  [ - 6 , 6 ] .  The islands in the middle of the 
chaotic orbit are Kolmogorov--Arnold-Moser (KAM) curves surrounding 
elliptic periodic orbits. The KAM curves are calculated after choosing 
appropriate initial conditions. The points in the middle of the KAM curves 
correspond to elliptic periodic orbits. The analytic calculation of the points 
M, O1, and 02 shown in Fig. 2 was discussed in Section 3. The other ellip- 
tic points denoted by Q1, Q2, Q3, and Q4 in Fig. 2 were found numerically. 
The straight line that starts from (0, 0) and ends at N in Fig. 2 is the line 
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of parabolic fixed points discussed in Section 3. This line also coincides 
with the symmetry line p=coox  for x<0.606530660. The hyperbolic 
periodic orbits marked as crossed lines in Fig. 2 denote stable and unstable 
manifolds embedded in the chaotic sea and were also determined numeri- 
cally. These orbits were found as follows. We took thousands of initial con- 
ditions along a line, either the symmetry line p = cooX or the boundary line 
x = 0. Next we iterated these initial conditions for a few periods to see if 
these lines came back and crossed the initial line. If they did not, there may 
not be periodic orbits along the initial line for these time periods. If they 
did cross the initial line, we reduced the range of initial conditions further 
and further to pin down the periodic orbits up to eight significant digits. 
If these periodic orbits were unstable for thousands of iterations, we call 
them hyperbolic. The monodromy matrix is then calculated about a small 
neighborhood of these hyperbolic periodic orbits. Stable and unstable 
manifolds are then obtained through the iterations of the initial conditions 
along the eigenvectors of the monodromy matrix. In Fig. 2, we show a 
hyperbolic period-7 orbit, denoted by intersections of stable and unstable 
manifolds. 

In the quantum study we fixed co o = 1 as in the classical case and chose 
values of h and n (the dimension of the truncated U matrix). Next we 
diagonalized the U matrix to obtain its quasienergy spectra. In choosing 
the values of h and n, we observe that n has to be such that the maximum 
value of the eigenenergy of/4o has to be larger than the maximum energy 
of the classical trajectory in the region 2 P max/2. Here P max is the maximum 
phase-space momentum of interest. In the plots shown in Fig. 2, Pmax = 6. 
Otherwise the portion of the phase space of interest is not fully covered by 
the quantum mechanical calculation. From the numerical analysis point of 
view, the smaller the h, the bigger the off-diagonal matrix elements in Ho, 
in the sinusoidal basis, and the larger the n value should be to achieve 
accuracy in the calculations of the parabolic functions. After several tries 
we chose h = 0.012 and n = 150 as optimal parameter values. For h smaller 
than this value a larger n has to be used. Furthermore, we found that for 
these parameter values a clear connection between the classical and quan- 
tum solutions is achieved. Thus we do not expect qualitative changes in our 
results from considering matrices one order of magnitude larger than the 
ones considered here. 

In calculating the Husimi distributions of the quasienergy eigenfunc- 
tions [see Eq. (29)], we scanned the (Xo, Po) values through the region of 
phase space of interest using a grid of 60 x 80 points. The resulting Husimi 
distributions ~o(x0, P0) are shown as contour plots in Figs. 5 8, with the 
value of Planck's constant h annotated at the upper right-hand corner in 
the figures. 
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Fig. 5. 
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Contour plot of a Husimi distribution of a quasienergy eigenfunction corresponding 
to the elliptic periodic orbits O~ and 0 2 shown in Fig. 2. 

Fig. 6. 
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The same as in Fig. 5 corresponding to the parabolic fixed points shown in Fig. 2. 
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Fig. 7. Same as in Fig. 5 for the hyperbolic periodic orbit marked by its stable and unstable 
manifolds in Fig. 2. These structures are referred to as "scars" in the literature. 
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Fig. 8. Same as in Fig. 5 corresponding to the two periodic orbits, one elliptic, denoted by 
Ql,  Q2, Q3, and Q4 in Fig. 2, the other a hyperbolic orbit marked by its stable and unstable 
manifolds in the same figure. 
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Next we compare examples of Husimi distributions to the classical 
solutions shown in Fig. 2. We note first that there are clear structures in 
~(Xo, P0) that correspond to the classical elliptic, parabolic, and hyper- 
bolic periodic orbits shown in Fig. 2. Specifically, Fig. 5 shows the Husimi 
distribution of a quasienergy eigenfunction whose classical counterpart is 
the elliptic periodic orbits O1 and 02 shown in Fig. 2. Figure 6 shows 
~(Xo, Po) for a quasienergy eigenfunction which corresponds to parabolic 
fixed points. Figure 7 shows the Husimi distribution for a quasienergy 
eigenfunction corresponding to the period-7 hyperbolic periodic orbit 
marked by its stable and unstable manifolds in Fig. 2. The structures in the 
Husimi distributions shown in Fig. 7 are referred to as "scars" in the 
literature. (6'v'2~ These are defined as enhanced wavefunction probability 
densities in the Husimi distributions about hyperbolic classical periodic 
orbits. Since hyperbolic periodic orbits play an important role in classical 
chaos, one expects that the "scars" may also play an important role in 
sorting out the QMCC. Thus understanding of the meaning of "scars" may 
be important in understanding the QMCC. Finally, in Fig. 8 we show the 
Husimi distribution of a single quasienergy eigenfunction having a clear 
structure around two periodic orbits. One is a period-4 elliptic orbit shown 
in Fig. 2 as Q1, Q2, Q3, and Q4, and the other is the period-7 hyperbolic 
orbit marked by its stable and unstable manifolds. This type of solution is 
a purely quantum mechanical result and relates the quantum tunneling 
between elliptic regions in phase space. This tunneling effect between the 
classical elliptic and hyperbolic orbits through KAM curves has been 
observed in other classically chaotic system. (7"22) This feature implies that 
the correspondence between the classical orbits and the Husimi distribu- 
tions of the eigenfunctions is not one to one, and the mixing of the elliptic 
and hyperbolic types in quantum mechanics is a major difference with 
respect to classical mechanics. Out of the 150 Husimi distributions we 
calculated, about 40% clearly correspond to elliptic classical periodic 
orbits, about 20% to hyperbolic orbits, and 2 or 3 are parabolic and 3 or 
4 correspond to tunneling events between elliptic and hyperbolic orbits. 
There are Husimi distributions that cannot be identified to any of the 
above types, although they are rather well defined in phase space. When 
the period is less than 10, the Husimi distributions can be clearly identified. 
One difficulty in connecting all the quantum Husimi distributions to 
specific classical periodic orbits is that we do not have the full classification 
of all the classical orbits, including the ones that are not periodic. A full 
classical analysis of all possible solutions would be a very difficult task to 
carry out though. 
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6. C O N C L U S I O N S  

This paper has presented a direct connect ion between the classical and 
quan tum solutions of the Fermi acceleration model  in its finite inverted 
parametr ic  oscillator ( F I P O )  representation. The connect ion was exhibited 
for generic special solutions identified both  in the classical and quan tum 
mechanical  limits. The qua n t um  quasienergy solutions were analyzed in 
their Husimi phase-space representation. Examples of  elliptic, parabolic,  
and hyperbolic  orbits were connected directly to their quan tum counter-  
parts. Of  particular note are the Husimi distributions shown in Figs. 7 
and 8, where "scars" and coexisting hyperbolic and elliptic regions are 
shown. The former represents an increased probabili ty density, or phase 
space localization, about  the isolated hyperbolic periodic orbits in the sea 
of chaos. The latter is due to tunneling events, forbidden classically, 
through the dynamical  barriers produced by the K A M  surfaces. 
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